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Abstract.Multi-model averaging techniques provide opportunities to extract additional information from large ensembles of 

simulations. In particular, present-day model skill can be used to evaluate their potential performance in future climate 

simulations. Multi-model averaging methods have been used extensively in climate and hydrological sciences, but they have 

not been used to constrain projected plant productivity responses to climate change, which is a major uncertainty in earth 

system modelling.Here, we use three global observation-orientated estimates of current net primary productivity (NPP) to 15 

perform a reliability ensemble averaging (REA) using 30 global simulations of the 21
st
 century change in NPP based on the 

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) „business as usual‟ emissions scenario. We find that the 

three REAs support an increase in global NPP by the end of the 21
st
 century (2090s) compared to the 2000s, which is 4 – 6% 

stronger than the ensemble ISIMIP mean value of 23.7 Pg C y
-1

. Using REA also leads to a 43 – 67% reduction in the global 

uncertainty of 21
st
 century NPP projection, which strengthens confidence in the resilience of the CO2-fertilization effect to 20 

climate change. This reduction in uncertainty is especially clear for boreal ecosystems. Conversely, the large uncertainty that 

remains on the sign of the response of NPP in semi-arid regions points to the need for better observations and model 

development in these regions. 

1 Introduction  

Anthropogenic emissions of carbon dioxide (CO2) enhance the uptake of atmospheric carbon by terrestrial ecosystems 25 

through net primary productivity (NPP). This so-called CO2-fertilization effect has helped offset 25-30% of CO2 emissions 

responsible for climate change in recent decades (Canadell et al., 2007; Le Quéré et al., 2009). There exists a large 

uncertainty as to whether this positive effect of CO2-fertilization will be resilient to climate change, as shown by the spread 

between model projections from various intercomparison projects (Friedlingstein et al., 2006; Arora et al., 2013; Friend et 

al., 2014; Nishina et al., 2014, 2015), especially in highly productive tropical regions (Rammig et al., 2010; Cox et al., 30 
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2013). However, large ensembles of projections are challenging to interpret as they may include models with an opposite 

response to the same change in boundary conditions (Friedlingstein et al., 2006). Simulations from the Inter-Sectoral Impact 

Model Intercomparison Project (ISI-MIP, Warszawski et al., 2014) have shown that most of the uncertainty in 21
st
 century 

projections of the terrestrial carbon cycle can be attributed to differences between global vegetation models (GVMs; Friend 

et al., 2014; Nishina et al., 2014, 2015), although a non-negligible part of the uncertainty arises from differences in climate 5 

projections themselves (Ahlström et al., 2012). 

In recent years multi-model averaging has been widely used to extract information from large ensembles of simulations in 

studies targeting climate change (Bishop and Abramowitz, 2012; Krishnamurti et al., 1999), rainfall-runoff processes 

(Georgakakos et al., 2004; Huisman et al., 2009; Shamseldin et al., 1997; Viney et al., 2009) and catchment-scale nutrient 

exports (Exbrayat et al., 2010, 2013b). These methods range from simple arithmetic means of model ensembles to more 10 

elaborate weighting schemes that take model performance into account. The underlying assumption is that a model that is 

better able to reproduce current conditions should be given more weight in the final projection than a poorly performing 

model. The more complex Reliability Ensemble Averaging (REA; Giorgi and Mearns, 2002) approach takes into account a 

measure of convergence between projections to identify the most likely change: this way, the REA method avoids giving too 

much weight to an over-fitted model which may accurately represent current conditions for the wrong reasons but predicts 15 

vastly different change than other ensemble members (Exbrayat et al., 2013b). Metrics measuring model independence 

(Bishop and Abramowitz, 2012) have also been introduced in weighting schemes to avoid pseudo-replication.  

Until recently, applying these advanced multi-model averaging methods to simulations of the terrestrial carbon cycle has 

remained a challenge because of the lack of global observational datasets to constrain e.g. the REA weighting scheme. To 

our knowledge only Schwalm et al. (2015) have presented results of skill-based model averaging applied to historical 20 

simulations of the terrestrial carbon cycle to an ensemble of 10 models from the Multiscale synthesis and Terrestrial Model 

Intercomparison Project (MsTMIP; Huntzinger et al., 2013). However, we are not aware of any studies using these methods 

in the context of projections of the terrestrial carbon cycle under climate change.  

Here, we present the first example of a spatially-explicit application of the REA approach to extract a best estimate of NPP 

change (NPP) during the 21
st
 century under a business-as-usual scenario of emissions from a large ensemble of projections. 25 

We perform the REA procedure three times using different observation-constrained estimates of current NPP: retrievals of 

the terrestrial carbon cycle with the CARDAMOM model-data fusion approach (Bloom and Williams, 2015; Bloom et al., 

2016), an approximation of NPP based on the up-scaled FLUXCOM GPP datasets (Jung et al., 2009, 2011, 2017; 

Tramontana et al., 2016), and the MOD17A3 MODIS NPP product (Running et al., 2004; Zhao et al., 2005; Zhao and 

Running, 2010). Based on optimally-weighted model averages, we evaluate the impact of the REA method on 21
st
 century 30 

projections of ∆NPP but also on the uncertainty in the future resilience of the CO2-fertilization that exist among the models. 

We show that the REA procedure can help identify regions where uncertainties remain large and thereby inform the future 

development of models and observational networks needed to improve climate change projections. 
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2 Materials & methods 

2.1 The ISI-MIP ensemble  

We used an ensemble of simulations of net primary production (NPP) from the Inter-Sectoral Impact Model Intercomparison 

Project (ISI-MIP; Warszawski et al., 2014). The ISI-MIP simulations included here consist of 6 global vegetation models: 

HYBRID (Friend and White, 2000), JeDi(Pavlick et al., 2013), JULES (Clark et al., 2011), LPJmL (Sitch et al., 2003), 5 

SDGVM (Woodward et al., 1995) and VISIT (Ito and Inatomi, 2012). Each of these 6 GVMs was driven by bias-corrected 

output (Hempel et al., 2013) from 5 general circulation models (GCMs): GFDL-ESM2M (Dunne et al., 2012), HadGEM2-

ES (Collins et al., 2011), IPSL-CM5A-LR (Dufresne et al., 2013), MIROC-ESM-CHEM (Watanabe et al., 2011) and 

NorESM1-M (Bentsen et al., 2013), generating a total of 30 global simulations of NPP for the historical period and under the 

representative concentration pathway 8.5 (RCP8.5). We chose the ISI-MIP ensemble over other initiatives like C4MIP 10 

(Friedlingstein et al., 2006) or CMIP5 (Taylor et al., 2012) because the combination of multiple GVMs with multiple GCMs 

in ISI-MIP allows a more comprehensive coverage of the uncertainty in the terrestrial carbon cycle and attribution of 

dominant factor in the uncertainty of the future (Friend et al., 2014; Nishina et al., 2014, 2015) although we note that these 

simulations omit feedbacks from the biosphere on weather and atmospheric CO2 concentrations. As the ensemble integrates 

5 representations of the same GVM, and 6 representations of the same GCM, we avoid issues related to model genealogy 15 

(Knutti et al., 2013) that could lead similar models to bias results of the averaging because of intrinsic lack of independence 

between the different ensemble members (Bishop and Abramowitz, 2012). We focus our approach on NPP projections under 

the RCP8.5 scenario of emissions for which more simulations were available (Nishina et al., 2015). Mean annual current 

NPP and projected changes are summarised in Table 1 and Supplementary Figure S1. We note a large spread in current 

global NPP simulated by the models from 51.7 Pg C y
-1

 to 76.5 Pg C y
-1

 during the last 10 years of the historical simulations, 20 

as well as ∆NPP in the 2090s ranging from -17.0 to 41.4 Pg C y
-1

. Further information on the models and the ISI-MIP 

protocol are to be found in the Supplementary Information of Friend et al. (2014) and the respective model description 

papers listed in Table 1. 

2.2 Estimates of current NPP 

We use three different estimates of current NPP: (a) an observation-bound terrestrial carbon cycle analysis estimate, (b) an 25 

estimate based on up-scaled eddy-covariance CO2 flux measurements, and (c) an estimate based on satellite measurements of 

absorbed photosynthetically active radiation. To harmonize the approach, we re-gridded all observationally-constrained NPP 

datasets to the lowest dataset resolution (1°1°), and confined our analysis to the NPP dataset overlap period (2001-2010). 

Mean annual NPP and variability for each dataset is presented in Figures S2 and S3. 
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2.2.1CARDAMOM retrievals  

The CARbonDAta Model fraMework (Bloom et al., 2016) produces spatially explicit retrievals of the global terrestrial 

carbon cycle following a model-data fusion procedure. In each 1°1° pixel, the Data-Assimilation Linked Ecosystem Carbon 

version 2 (DALEC2; Bloom and Williams, 2015; Williams et al., 2005) is driven by ERA-Interim reanalysis climate data 

(Dee et al., 2011) and burned area from the Global Fire Emission Database version 4 (Giglio et al., 2013). A Bayesian 5 

Markov Chain Monte-Carlo approach is implemented to constrain DALEC2 according to observations of MODIS leaf area 

index (Myneni et al., 2002), tropical biomass (Saatchi et al., 2011), soil carbon content from the Harmonized World Soil 

Database (HWSD; FAO, 2012) and a set of Ecological and Dynamic Constraints (Bloom and Williams, 2015). Through this 

Bayesian procedure, CARDAMOM provides an explicit estimation of the uncertainty in model parameters and hence in 

land-atmosphere carbon fluxes such as net primary production (NPP) from site to global-scale (Bloom et al., 2016; 10 

Smallman et al., 2017). However, as not all the other datasets (see sections 2.2.2 and 2.2.3) provide a measure of the 

parametric uncertainty, in this study we rely on CARDAMOM‟s highest confidence estimates of a mean annual NPP of 50.1 

Pg C y
-1

. More details on the framework can be found in the supplementary information of Bloom et al. (2016).  

2.2.2 FLUXCOM 

The FLUXCOM project uses machine-learning methods (Tramontana et al., 2016) to up-scale global datasets from eddy-15 

covariance measurements of CO2 and energy fluxes from the FLUXNET network (Baldocchi et al., 2001). In a first step, a 

machine-learning algorithm is used to extract a relationship between local environmental drivers and ecosystem fluxes (Jung 

et al., 2009). Then, the trained algorithm is used in combination with gridded climate data and remote sensing observations 

to produce a global estimate of monthly ecosystem fluxes at a 0.5°×0.5° spatial resolution. In its first instance, FLUXCOM 

products relied on a random forest method (Breiman, 2001) but newly available datasets have been produced using 20 

additional machine learning methods (Tramontana et al., 2016; Jung et al., 2017).  

Here, we use the average of an ensemble of six FLUXCOM GPP datasets to derive an estimate of annual NPP for 2001-

2010. These datasets were created using three machine-learning methods: random forest, artificial neural networks and 

multivariate regression splines. Each machine-learning method was used to produce two GPP datasets corresponding to two 

partitioning methods of net ecosystem exchange (see Reichstein et al. (2005) and Lasslop et al. (2009)). Then, we used 25 

CARDAMOM‟s retrievals of carbon use efficiency (Bloom et al., 2016), the ratio of NPP to GPP, to derive a current value 

of NPP of 52.8 Pg C y
-1

 for the first ten years of the 21
st
 century from the 127.1 Pg C y

-1
 FLUXCOM estimated GPP.  

2.2.3 MODIS NPP 

The MOD17 MODIS GPP/NPP dataset provides 8-day estimates of GPP and annual NPP at a 1-km spatial resolution since 

the year 2000. Therefore, GPP is calculated as the product of the amount of absorbed photosynthetically active radiation 30 

(estimated from the MOD15 MODIS LAI/FPAR product, Myneni et al., 2002) and a biome-specific radiation use efficiency 
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that is adjusted as a function of air temperature and vapour pressure deficit. Land cover classification is derived from 

MODIS using the MCD12Q1 product (Friedl et al., 2002) while meteorological data are taken from the National Centers for 

Environmental Prediction (NCEP)/ Department of Energy (DOE) Reanalyses II. Then, annual maintenance respiration is 

estimated using a temperature-acclimated Q10 relationship (Tjoelker et al., 2001) while growth respiration is assumed to be a 

fixed fraction of NPP. The MODIS NPP dataset has been used to quantify the impact of droughts (Zhao and Running et al., 5 

2010) and the El Niño/Southern Oscillation on global terrestrial ecosystem productivity (Bastos et al., 2013). We re-gridded 

the annual NPP data to a 1°×1° spatial resolution for the reference years 2001-2010 from which we derived a 53.6 Pg C y
-1

 

mean annual value. 

2.3 Reliability Ensemble Averaging 

Multi-model averaging techniques have been developed to extract information and quantify the uncertainty from large 10 

ensembles of simulations (e.g. Krishnamurti et al., 1999). These methods range from simple arithmetic mean to more 

complex statistical methods (Viney et al., 2009) such as Bayesian Model Averaging (Raftery et al., 2005). A common 

assumption is that models which better reproduce available observations should be given more weight in a final prediction 

than poorly performing models. However, models may be over-fitted to match observations, providing the good answers for 

the wrong reasons (Exbrayat et al., 2013b). These models are likely to represent improperly, or even omit, processes which 15 

may become key under changed conditions, and this challenges their reliability. Therefore, the Reliability Ensemble 

Averaging method (REA; Giorgi and Mearns, 2002) was developed to integratealso a measure of model convergence in the 

weighting scheme and penalize models which do not predict the same response to changes (Exbrayat et al., 2013b).  

In each 1°×1° pixel, each model projection i of the 30 GVM-GCM ensemble is assigned a reliability factor Ri that is 

calculated such as  20 
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where represents the variability in observations expressed as the difference between the largest and smallest values of 

annual NPP in each pixel (Figure S3; Giorgi and Mearns, 2002), while Bi and Di correspond to a measure of model i‟s 

performance and convergence, respectively. We produce three REA estimates based on CARDAMOM,FLUXCOM and 

MODIS NPP, further referred to as REAC, REAF and REAM, respectively. For each REA application, terms ε, Bi, Di and 25 

hence Ri (equation 1) are recalculated based on the particular observational dataset to produce three independent sets of 

model coefficients. 

Here, we apply the REA method to the ensemble of 30 ISI-MIP simulations of 21
st
 century ∆NPP under RCP8.5 emission 

scenario. We first re-gridded the ISI-MIP data using the remapcon function of the Climate Data Operators version 1.6.9 to 

match the 1°×1° spatial resolution of the observationally constrained datasets (see section 2.2) and performed the procedure 30 
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in each land pixel to create maps of REA averages. We then apply the REA method three times (REAC, REAF and REAM) to 

evaluate their current performance. 

For each 30 simulations of the ISI-MIP ensemble we calculated Bi in each pixel such as  

obsii NPPNPPB             (2) 

whereNPPi is the mean annual NPP predicted by model i during the 10 last years of the historical simulations and NPPobs 5 

corresponds to either of the observational datasets mean annual NPP. Then for each model the value of Di was calculated in 

each pixel as the difference between the change predicted by model i and the REA average such as  
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whereNPPi is the change in mean NPP in the last 10 years of the RCP8.5 simulation (2090-2099) compared to the last 10 

years of the historical simulations (1996-2005) predicted by the ensemble member i and N is the total number of ensemble 10 

members. The REA average is not known beforehand and weights RD,i are calculated iteratively(Giorgi and Mearns, 2002). 

Finally, weights RB,i and RD,i are assigned a maximum value of 1 if the absolute value of Bi and Di are smaller than , the 

measure of variability in the observations. 

The uncertainty around the REA average change is calculated as the weighted root-mean square difference (RMSD) 

calculated following  15 
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whereNPPREA is the REA average change. Assuming that the error distribution is somewhere between uniform and 

Gaussian, the 60-70% confidence interval of the REA is represented by ΔNPPREA±RMSD (Giorgi and Mearns, 2002). 

Giorgi and Mearns (2002) further introduced a quantitative measure of the collective model reliability ρ, based on Ri, where 
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             (5) 20 

which will vary pixel-wise based on each model‟s performance with respect to the mean and variability represented in each 

observational dataset as well as the convergence to the REA average. The reliability measure ρ can be further decomposed in 

ρB and ρD, such as  
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whereρB and ρD correspond to the ensemble reliability with respect to model biases and model convergence respectively. 

3 Results 

The REA averaging method yields a global increase of NPP of 24.7 ± 9.8 Pg C y
-1

(REA average ± RMSD) for 5 

CARDAMOM,25.0 ± 10.0 Pg C y
-1

 for FLUXCOM and 23.9 ± 16.2 Pg C y
-1

 for MODIS NPP. As the ISI-MIP ensemble 

mean indicated a ∆NPP of 23.7 Pg C y
-1

, these results represent a 4% increase of the mean for REAC, 5% for REAF and 6% 

for REAM. The pixel-wise one standard deviation uncertainty in the ISI-MIP ensemble was 29.6 Pg C y
-1

 and the REA 

results indicate strong reduction of 67% for REAC, 66% for REAF and 43% for REAM. These results further indicate that in 

all three cases the REA averaging method reduces the uncertainty of the ensemble spread toward an agreement on a future 10 

increase in the global land carbon uptake. 

Zonal means (Figure 1) indicate that the ISI-MIP ensemble mean and all three REAC, REAF and REAM averages estimate an 

increase in NPP across all latitudes. All three REA averages predict a weaker increase in NPP at high latitudes of the 

northern and southern hemispheres. They also agree on a stronger increase in NPP than the ISI-MIP ensemble mean for 

tropical regions between 15°S and 10°N but also between 20°N and 25°N and temperate regions around 45°N. REAC 15 

indicates a weaker increase in NPP than ISI-MIP around 20°S while REAF and REAM averages are similar to the ISI-MIP 

ensemble mean in these regions. The uncertainty around each of the REA averages is smaller than the uncertainty around the 

ISI-MIP ensemble mean across all latitudinal zones. Furthermore, while the very large uncertainty around the ISI-MIP 

ensemble mean does not provide confidence on the sign of ∆NPP across most regions, the uncertainty around all three REA 

averages is constrained toward an increase in NPP across all regions, except around 20°S. 20 

The spatial distribution of the ISI-MIP ensemble mean ∆NPP contrasts with that of the three REA averages with noticeable 

differences across all regions of the globe (Figure 2). All three REA averages predict a weaker increase in NPP than the ISI-

MIP ensemble in Canada and Scandinavia, while they predict a stronger increase in NPP in Eurasia. Similarly, all three REA 

averages predict a stronger increase in NPP than the ISI-MIP ensemble in tropical rainforest of South America, Africa and 

south-east Asia. The REA averages agree on a weaker ΔNPP in semi-arid regions of the Sahel, southern Africa, Australia 25 

and the Tibetan Plateau. Overall, all REAC, REAF and REAM exhibit broadly similar patterns in the spatial distribution of 

∆NPP differences with the ISI-MIP ensemble mean that is confirmed by R
2
 values of 0.74 between REAC and REAF, 0.66 

between REAC and REAM and 0.70 between REAF and REAM.  
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The uncertainty in ΔNPP is reduced across most regions of the globe for all three REAC, REAF and REAM(Figure 1 and 

Figure 3). This reduction of uncertainty leads to a confidence on the sign estimation of ΔNPP in 84%, 80% and 73% of all 

the land pixels for REAC, REAF and REAM respectively, against 35% for the ISI-MIP ensemble. The average reduction in 

uncertainty is large in regions north of 40°N (Figure 1), mostly corresponding to a reduction in uncertainty in boreal Eurasia 

(Figure 3) that provides better confidence in an increase in NPP (Figure 2). We note that the uncertainty in the REAM 5 

remains similar to the uncertainty around the ISI-MIP ensemble mean for large portions of the southern hemisphere such as 

southern Africa. However, all three REAC, REAF and REAM cannot provide confidence on the sign of ΔNPP for southern 

Africa and Australia. 

The zonal means of the mean values of the three coefficients Ri, RB,i and RD,i(Figure 4) show that MODIS-based REAM 

yields larger values of all coefficients compared to REAC and REAF. We note strong inter-model similarities in the spatial 10 

distribution of model weights (Ri; Figure 4a-c), biases (RB,i; Figure 4d-f) and convergence of the projected ΔNPP (RD,i; 

Figure 4g-i). Only the HYBRID models are almost systematically assigned lower weight Ri as a result of lower values for 

both RB,i (i.e. a larger bias than the other models) and RD,i (i.e. a divergence in projected ΔNPP). This is especially obvious in 

boreal regions north of 60°N where HYBRID is assigned values close to 0 in REAC and REAF. 

The collective model reliability measure ρ provides a quantification of the spread of model weights determined through the 15 

REA method (Figure 5). Regions where ρ is close to 1 indicates places where there is a strong consensus between models on 

the current NPP but also on 21
st
 century ΔNPP. There are large differences in ρdepending on the NPP observational datasets 

using to constrain the REA (Figure 5). Indeed, while the average value of ρ is 0.35 for REACand0.38 for REAF, it is 0.75 for 

REAM. REAC and REAF yields very low values of ρ in boreal regions (Figure 5) while REAM leads to values of ρ close to 1 

in most regions south of 60°S. The measure of reliabilityρ can be further decomposed in two components ρB and ρD (Figure 20 

5d-i, equations 6 and 7). Results indicate that ρD is consistentlygreater than ρB for all REAC, REAF and REAM. This result 

means that model convergence in the simulation of ΔNPP is greater than the model performance to reproduce current NPP. 

In other words, the model performance evaluated against the three current NPP datasets contributes the most to decreasing 

the ensemble reliability ρ. Values of ρB are lower than 0.10 in boreal regions for REAC and REAF, indicating that model bias 

is greater than the variability of NPP ε estimated from the CARDAMOM retrievals and the FLUXCOM based NPP by a 25 

factor 10. Conversely, regions where ρB is close to 1 for REAM indicate that the variability in the MODIS NPP observations 

is larger than model biases.  

4 Discussion 

The globally integrated values of the REA average change (23.9 to 25.0 Pg C y-1) and the ISI-MIP ensemble mean (23.7 Pg 

C y-1) are similar. This is in agreement with a previous multi-model approach that only found a 0.01 Pg C y-1 difference in 30 

historical mean annual net ecosystem exchange between a simple mean and a weighted average based on model performance 

(Schwalm et al., 2015). However, by contrast with this previous study, we find that in all three REAC, REAF and REAM a 
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large spatial variability in grid cell differences (Figure 2) that compensate each other to yield a relatively small global 

difference with ISI-MIP ensemble mean. The three REA averages indicate a stronger positive ΔNPP than the ISI-MIP 

ensemble mean for boreal Eurasia and tropical rainforests (Figures 1 and 2), and a weaker but still positive ΔNPP in northern 

Canada and semi-arid regions like the Sahel, the Tibetan plateau, southern Africa and Australia.  

The reduction in uncertainty arising from the REA method helps putting a greater confidence in a sustained CO2-fertilization 5 

effect throughout the 21st century although these results may be influenced by model-wise differences in process 

representation. In both the ISI-MIP ensemble mean and the three REA averages, the sustained increase of NPP at high 

latitudes, where nitrogen (N) limitation on NPP dominates (Zhang et al., 2011; Exbrayat et al., 2013a) but is only represented 

in the HYBRID and SDGVM models (Table 1; Nishina et al., 2014). The increase in NPP in these N-limited regions is in 

contrast with observations at Free-Air CO2 Enrichment experiments that indicate a quick weakening of the CO2-fertilization 10 

effect as soil N stores deplete (Norby et al., 2010). Models which integrate coupled C-N cycles generally predict the 

historical land carbon sink in good agreement with estimates from the Global Carbon Budget (Huntzinger et al., 2017) and 

project a decrease in NPP throughout the 21st century (Thornton et al., 2009; Goll et al., 2012; Zhang et al., 2013; Wieder et 

al., 2015). 

Similarly, recent observations have concluded a total absence of CO2-fertilization effect under phosphorus-limited 15 

conditions (Ellsworth et al., 2017) which dominates in the tropics and leads to an additional reduction of NPP in model 

projections (Goll et al., 2012; Zhang et al., 2013; Wieder et al., 2015). Here, only the HYBRID and SDGVM models 

integrate the representation of N limitations on NPP (Nishina et al., 2014) and none of them represent phosphorous 

limitations. HYBRID is also the only model to predict a possible decrease in global NPP throughout the 21st century (Table 

1 and Friend et al., 2014) because of a reduction at high latitudes and in tropical rainforests (Supplementary Figure S1). 20 

Thus, HYBRID is assigned low RD,i weights in these regions (Figure 4g-i and Supplementary Figures S4-12) and cannot 

influence the REA average and the calculation of its uncertainty (equation 4) despite integrating more detailed representation 

of ecosystem processes. However, HYBRID also exhibits stronger differences to the observational datasets than the other 

models especially at high latitudes (Figure 4d-f) which may indicate a strong sensitivity of N limitations. Nevertheless, we 

note that all models‟ performances tend to decrease in regions north of 60°N where their ΔNPP projections also diverge 25 

(Figure 4g-i, Figure 5g-i). Overall, we note that the promising REA results should be used carefully as they cannot correct 

for the omissions of key processes by a large fraction of the ensemble members. There is also considerable debate on how 

good large-scale NPP observational products are (Kolby-Smith et al., 2015; de Kauwe et al., 2016), a problem that we 

address by performing the REA approach three times. 

In all three REAC, REAF and REAM cases, the global uncertainty around the REA average is reduced compared to the 30 

uncertainty within the ISI-MIP ensemble which provides a higher degree of confidence in the resilience of the global CO2-

fertilization effect to warming. The reduction in uncertainty, and the gain in confidence on the sign of ΔNPP, is especially 

obvious in boreal regions for all three REA (Figure 3). Conversely, uncertainties on the sign of ΔNPP remain large for all 

REA in semi-arid regions of Southern Africa and Australia. It is a non-trivial result as the response of these ecosystems to 
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climate events like El Niño and La Niña drives the inter-annual variability and the trend of the global terrestrial carbon sink 

(Bastos et al., 2013; Poulter et al., 2014; Ahlström et al., 2015), while projections indicate a gain of forest ecosystems over 

savannahs in the future (Moncrieff et al., 2016).  

Because of the way the REA method assigns coefficients to ensemble members with respect to the annual variability in the 

data  (equation 1), the final REA average and uncertainty are conditional on the variability represented in current estimate 5 

of NPP. Figure 5a-c shows that the reliability of the ensemble measured by ρ varies depending on which observational 

dataset is used, although generally lower values of ρB and ρD at high latitudes indicate that models disagree on the current 

NPP and future ΔNPP in these regions. Furthermore, high values of ρ for REAM indicate a larger variability ε in the MODIS 

dataset compare to CARDAMOM and the FLUXCOM based NPP data (Figure S3). This larger variability leads to more 

models being given a weight close to 1 in the averaging scheme because the variability is larger than their bias (Figure 5f) or 10 

the predicted change (Figure 5i). Conversely, the relatively smaller variability in CARDAMOM retrievals leads more 

models to be weighted poorly according to both their performance (Figure 5d) and their convergence with other models 

(Figure 5g). The variability ε influences the final uncertainty and as a result the REAC has a smaller uncertainty because it is 

more penalizing on models, and vice-versa with MODIS NPP. 

5 Conclusion 15 

We applied the REA method on a pixel-by-pixel base to an ensemble of 30 simulations of historical and 21st century NPP 

from the ISI-MIP project. Our results indicate that using either CARDAMOM retrievals, a FLUXCOM based estimate of 

current NPP or data from MODIS to constrain the REA scheme helps at least halving the uncertainty in 21st century global 

∆NPP. This process leads to a higher confidence in a sustained CO2-fertilization effect. We nevertheless note that a large 

uncertainty remains in semi-arid regions that is mostly attributable to differences in process representation in global 20 

vegetation models. Furthermore, most models used here do not account for N limitations on NPP and this may have altered 

the outcome of the convergence coefficient used in REA. 

Acknowledgements 

This work was supported by the Natural Environment Research Council through the National Centre for Earth Observation. 

Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with 25 

the National Aeronautics and Space Administration. PF was supported by the Joint UK DECC/Defra Met Office Hadley 

Centre Climate Programme (GA01101). For their roles in producing, coordinating, and making available the ISI-MIP model 

output, we acknowledge the modelling groups and the ISI-MIP coordination team.  

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



11 

 

References 

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., 

Friedlingstein, P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., 

Zaehle, S. and Zeng, N.: Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land 

CO₂ sink, Science, 348(6237), 895–9, doi:10.1126/science.aaa1668, 2015. 5 

Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and uncertainty in terrestrial ecosystem carbon response 

to CMIP5 climate change projections, Env. Res. Lett., 7, 044008, doi:10.1088/1748-9326/7/4/044008, 2012. 

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., 

Cadule, P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F. and Wu, T.: Carbon–Concentration and Carbon–Climate 

Feedbacks in CMIP5 Earth System Models, J. Clim., 26(15), 5289–5314, doi:10.1175/JCLI-D-12-00494.1, 2013. 10 

Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., 

Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyers, T., Munger, W., Oechel, W., U, K. T. P., 

Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S.: FLUXNET: A new tool to 

study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. 

Am. Meteorol. Soc., 82(11), 2415–2434, doi:10.1175/1520-0477(2001)082<2415:fantts>2.3.co;2, 2001. 15 

Bastos, A., Running, S. W., Gouveia, C. and Trigo, R. M.: The global NPP dependence on ENSO: La Niña and the 

extraordinary year of 2011, J. Geophys. Res. Biogeosciences, 118(3), 1247-1255, doi:10.1002/jgrg.20100, 2013. 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, A. M., Baldocchi, D., 

Bonan, B. G., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, W. 

K., Roupsard, O., Veenendaal, E., Viovy, N., Woodward, I. F., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: 20 

Global Distribution and Covariation with Climate, Science, 329, 834–838, doi:10.1126/science.1184984, 2010. 

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø.,Drange, H., Roelandt, C., Seierstad, I. A., 

Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic 

evaluation of the physical climate, Geosci. Model Dev., 6, 687-720, doi:10.5194/gmd-6-687-2013, 2013. 

Bishop, C. H. and Abramowitz, G.: Climate model dependence and the replicate Earth paradigm, Clim. Dyn., 41(3–4), 885–25 

900, doi:10.1007/s00382-012-1610-y, 2012. 

Bloom, A. A. and Williams, M.: Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological 

“common sense” in a model–data fusion framework, Biogeosciences, 12(5), 1299–1315, doi:10.5194/bg-12-1299-2015, 

2015. 

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. and Williams, M.: The decadal state of the terrestrial carbon 30 

cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times., Proc. Natl. Acad. Sci. U. S. A., 

113(5), 1285–1290, doi:10.1073/pnas.1515160113, 2016. 

Breiman, L.: Random forests, Mach. Learn., 45(1), 5–32, 2001. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



12 

 

Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., 

Houghton, R. A., and Marland, G.: Contributions to accelerating atmospheric CO2 growth from economic activity, 

carbon intensity, and efficiency of natural sinks, Proc. Natl. Acad. Sci., 104, 18866–18870, 

doi:10.1073/pnas.0702737104, 2007. 

Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., 5 

Blyth, E., Boucher, O., Harding, R. J., Huntingford, C. and Cox, P. M.: The Joint UK Land Environment Simulator 

(JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4(3), 701–722, 

doi:10.5194/gmd-4-701-2011, 2011. 

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, 

M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.:  10 

Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051-1075, 

doi:10.5194/gmd-4-1051-2011, 2011. 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, 

G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, 

M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., 15 

Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, 

C., Thépaut, J.-N. andVitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation 

system, Q. J. R. Meteorol. Soc., 137(656), 553–597, doi:10.1002/qj.828, 2011. 

De Kauwe, M. G., Keenan, T. F., Medlyn, B. E., Prentice, I. C. and Terrer., C.: Satellite based estimates underestimate the 

effect of CO2 fertilization on net primary productivity, Nature Clim. Change, 6, 892–893, doi:10.1038/nclimate3105, 20 

2016. 

Dufresne, J.-L., et al.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. 

Dyn., ., 40, 2123–2165, doi:10.1007/s00382-012-1636-1, 2013. 

Dunne, J. P., et al.: GFDL‟s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and 

Baseline Simulation Characteristics, J. Clim., 25, 6646–6665, doi:10.1175/JCLI-D-11-00560.1, 2012. 25 

Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., Gimeno, T. E., Macdonald C. A., 

Medlyn, B. E., Powell, J. R., Tjoelker, M. G. and Reich, P. B.: Elevated CO2 does not increase eucalypt forest 

productivity on a low-phosphorus soil, Nature Clim. Change, 7, 279-282, doi: 10.1038/nclimate3235, 2017. 

Exbrayat, J.-F., Viney, N. R., Seibert, J., Wrede, S., Frede, H.-G. and Breuer, L.: Ensemble modelling of nitrogen fluxes: 

data fusion for a Swedish meso-scale catchment, Hydrol. Earth Syst. Sci., 14(12), 2383–2397, doi:10.5194/hess-14-2383-30 

2010, 2010. 

Exbrayat, J.-F., Pitman, A. J., Zhang, Q., Abramowitz, G. and Wang, Y.-P.: Examining soil carbon uncertainty in a global 

model: response of microbial decomposition to temperature, moisture and nutrient limitation, Biogeosciences, 10(11), 

7095–7108, doi:10.5194/bg-10-7095-2013, 2013a. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



13 

 

Exbrayat, J.-F., Viney, N. R., Frede, H.-G. and Breuer, L.: Using multi-model averaging to improve the reliability of 

catchment scale nitrogen predictions, Geosci. Model Dev., 6(1), 117–125, doi:10.5194/gmd-6-117-2013, 2013b. 

FAO/IIASA/ISRIC/ISSCAS/JRC: Harmonized World Soil Database (version 1.21), FAO, Rome, Italy and IIASA, 

Laxenburg, Austria, 2012. 

Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., Strahler, A. H., Woodcock, C. E., Gopal, S., 5 

Schneider, A., Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global land cover mapping from MODIS: algorithms 

and early results, Remote Sens. Environ., 83(1-2), 287-302, doi:10.1016/S0034-4257(02)00078-0 , 2002. 

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., 

John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., 

Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: 10 

Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, J. Clim., 19, 3337–3353, 

doi:10.1175/JCLI3800.1, 2006. 

Friend, A. D. and White, A.: Evaluation and analysis of a dynamic terrestrial ecosystem model under preindustrial conditions 

at the global scale, Global Biogeochem. Cycles, 14(4), 1173–1190, doi:10.1029/1999GB900085, 2000. 

Friend, A. D., Lucht, W., Rademacher, T. T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark, D. B., Dankers, R., Falloon, 15 

P. D., Ito, A., Kahana, R., Kleidon, A., Lomas, M. R., Nishina, K., Ostberg, S., Pavlick, R., Peylin, P., Schaphoff, S., 

Vuichard, N., Warszawski, L., Wiltshire, A. and Woodward, F. I.: Carbon residence time dominates uncertainty in 

terrestrial vegetation responses to future climate and atmospheric CO2., Proc. Natl. Acad. Sci. U. S. A., 111(9), 3280–5, 

doi:10.1073/pnas.1222477110, 2014. 

Georgakakos, K. P., Seo, D.-J., Gupta, H., Schaake, J. and Butts, M. B.: Towards the characterization of streamflow 20 

simulation uncertainty through multimodel ensembles, J. Hydrol., 298(1–4), 222–241, doi:10.1016/j.jhydrol.2004.03.037, 

2004. 

Giglio, L., Randerson, J. T. and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-

generation global fire emissions database (GFED4), J. Geophys. Res. Biogeosciences, 118(1), 317–328, 

doi:10.1002/jgrg.20042, 2013. 25 

Giorgi, F. and Mearns, L. O.: Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from 

AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method, J. Clim., 15, 1141–1158, 

doi:10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2, 2002. 

Hempel, S., Frieler, K., Warszawski, L., Schewe, J. and Piontek, F.: A trend-preserving bias correction – the ISI-MIP 

approach, Earth Syst. Dyn., 4, 219–236, doi:10.5194/esd-4-219-2013, 2013. 30 

Huisman, J. A., Breuer, L., Bormann, H., Bronstert, A., Croke, B. F. W., Frede, H.-G., Gräff, T., Hubrechts, L., Jakeman, A. 

J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lindström, G., Seibert, J., Sivapalan, M., Viney, N. R. and 

Willems, P.: Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario 

analysis, Adv. Water Resour., 32(2), 159–170, doi:10.1016/j.advwatres.2008.06.009, 2009. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



14 

 

Huntzinger, D. N., Schwalm, C., Michalak, A. M., Schaefer, K., King, A. W., Wei, Y., Jacobson, A., Liu, S., Cook, R. B., 

Post, W. M., Berthier, G., Hayes, D., Huang, M., Ito, A., Lei, H., Lu, C., Mao, J., Peng, C. H., Peng, S., Poulter, B., 

Riccuito, D., Shi, X., Tian, H., Wang, W., Zeng, N., Zhao, F., and Zhu, Q.: The North American Carbon Program Multi-

Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design, Geosci. 

Model Dev., 6, 2121-2133, https://doi.org/10.5194/gmd-6-2121-2013, 2013. 5 

Huntzinger, D. N., Michalak, A. M., Schwalm, C., Ciais, P., King, A. W., Fang, Y., Schaefer, K., Wei, Y., Cook, R. B., 

Fisher, J. B., Hayes, D., Huang, M., Ito, A., Jain, A. K., Lei, H., Lu, C., Maignan F., Mao J., Parazoo N., Peng S., Poulter 

B., Ricciuto D., Shi, X., Tian, H., Wang, W., Zeng, N., and Zhao, F.: Uncertainty in the response of terrestrial carbon 

sink to environmental drivers undermines carbon-climate feedback predictions, Scientific Reports 7, 4765, 

doi:10.1038/s41598-017-03818-2, 2017. 10 

Ito, A. and Inatomi, M.: Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions 

between the Global Carbon and Water Cycles, J. Hydrometeorol., 13(2), 681–694, doi:10.1175/JHM-D-10-05034.1, 

2012. 

Jung, M., Reichstein, M. and Bondeau, A.: Towards global empirical upscaling of FLUXNET eddy covariance observations: 

validation of a model tree ensemble approach using a biosphere model, Biogeosciences, 6(10), 2001–2013, 15 

doi:10.5194/bg-6-2001-2009, 2009. 

Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C., Sitch, S., Ahlström, A., Arneth, A., Gustau Camps-Valls, G., 

Ciais, P.,  Friedlingstein, P., Gans, F., Ichii, K., Jain, A. K., Kato, E., Papale, D., Poulter, B., Raduly, B., Rödenbeck, 

C., Tramontana, G., Viovy, N., Wang, Y.-P., Weber, U., Zaehle, S. and Zeng, N.: Compensatory water effects link yearly 

global land CO2 sink changes to temperature, Nature, 541, 516-520, doi:10.1038/nature20780, 2017. 20 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, 

D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., 

Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-

atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and 

meteorological observations, J. Geophys. Res.-Biogeo., 116, G00J07, doi:10.1029/2010JG001566, 2011 25 

Knutti, R., Masson, D., and Gettelman, A.: Climate model genealogy: Generation CMIP5 and how we got there, Geophys. 

Res. Lett. 40(6), 1194-1199, doi:10.1002/grl.50256, 2013. 

Kolby Smith, W., Reed, S. C.,Cleveland, C. C., Ballantyne, A. P., Anderegg, W. R. L., Wieder, W. R., Liu, Y. Y., and 

Running, S. W.: Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization, 

Nature Clim. Change, 6, 306–310, doi:10.1038/nclimate2879, 2015. 30 

Krishnamurti, T. N., Kishtawal, C. M., LaRow, T. E., Bachiochi, D. R., Zhang, Z., Williford, C. E., Gadgil, S. and 

Surendran, S.: Improved Weather and Seasonal Climate Forecasts from MultimodelSuperensemble, Science (80-. )., 

285(5433), 1548–1550, doi:10.1126/science.285.5433.1548, 1999. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



15 

 

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of 

net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global 

evaluation, Glob. Change Biol., 16(1), 187-208, doi:10.1111/j.1365-2486.2009.02041.x 

Le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., 

Foster, P., Friedlingstein, P., Gurney, K., Houghton, R. A., House, J. I., Huntingford, C., Levy, P. E., Lomas, M. R., 5 

Majkut, J., Metzl, N., Ometto, J. P., Peters, G. P., Prentice, I. C., Randerson, J. T., Running, S. W., Sarmiento, J. L., 

Schuster, U., Sitch, S., Takahashi, T., Viovy, N., van der Werf, G. R., and Woodward, F. I.: Trends in the sources and 

sinks of carbon dioxide, Nat. Geosci., 2, 831–836, doi:10.1038/ngeo689, 2009. 

Moncrieff, G. R., Scheiter, S., Langan, L., Trabucco, A., and Higgins, S. I.: The future distribution of the savannah biome: 

model-based and biogeographic contingency, Philos. Trans. R. Soc. B-Biol. Sci., 371(1703), 20150311, doi: 10 

10.1098/rstb.2015.0311, 2016. 

Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. 

R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani R. R., and Running, S. W.: Global products of vegetation 

leaf area and fraction absorbed PAR from year one of MODIS data, Remote Sens. Environ., 83(1-2), 214-231, 2002. 

Nishina, K., Ito, A., Beerling, D. J., Cadule, P., Ciais, P., Clark, D. B., Falloon, P., Friend, A. D., Kahana, R., Kato, E., 15 

Keribin, R., Lucht, W., Lomas, M., Rademacher, T. T., Pavlick, R., Schaphoff, S., Vuichard, N., Warszawaski, L. and 

Yokohata, T.: Quantifying uncertainties in soil carbon responses to changes in global mean temperature and 

precipitation, Earth Syst. Dyn., 5(1), 197–209, doi:10.5194/esd-5-197-2014, 2014. 

Nishina, K., Ito, A., Falloon, P., Friend, A. D., Beerling, D. J., Ciais, P., Clark, D. B., Kahana, R., Kato, E., Lucht, W., 

Lomas, M., Pavlick, R., Schaphoff, S., Warszawaski, L. and Yokohata, T.: Decomposing uncertainties in the future 20 

terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the 

ISI-MIP results, Earth Syst. Dyn., 6(2), 435–445, doi:10.5194/esd-6-435-2015, 2015. 

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and McMurtrie, R. E.: CO2 enhancement of forest productivity 

constrained by limited nitrogen availability, Proc. Natl. Acad. Sci., 107, 19368–19373, doi:10.1073/pnas.1006463107, 

2010. 25 

Pavlick, R., Drewry, D. T., Bohn, K., Reu, B. and Kleidon, A.: The Jena Diversity-Dynamic Global Vegetation Model (JeDi-

DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional 

trade-offs, Biogeosciences, 10(6), 4137–4177, doi:10.5194/bg-10-4137-2013, 2013. 

Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G., Chevallier, F., Liu, Y. Y., 

Running, S. W., Sitch, S. and van der Werf, G. R.: Contribution of semi-arid ecosystems to interannual variability of the 30 

global carbon cycle, Nature, 509(7502), 600–603, doi:10.1038/nature13376, 2014. 

Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast 

Ensembles, Mon. Weather Rev., 133, 1155–1174, doi:10.1175/MWR2906.1, 2005. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



16 

 

Rammig, A., Jupp, T., Thonicke, K., Tietjen, B., Heinke, J., Ostberg, S., Lucht, W., Cramer, W. and Cox, P.: Estimating the 

risk of Amazonian forest dieback, New Phytol., 187(3), 694–706, doi:10.1111/j.1469-8137.2010.03318.x, 2010. 

Reichstein, M., Falge, E., Baldocchi, D., et al.: On the separation of net ecosystem exchange into assimilation and ecosystem 

respiration: review and improved algorithm, Glob. Change Biol., 11(9), 1424–1439, 2005. 

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M. and Hashimoto, H.: A Continuous Satellite-Derived 5 

Measure of Global Terrestrial Primary Production, Bioscience, 54(6), 547, doi:10.1641/0006-

3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004. 

Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., 

Hagen, S., Petrova, S., White, L., Silman, M. and Morel, A.: Benchmark map of forest carbon stocks in tropical regions 

across three continents., Proc. Natl. Acad. Sci. U. S. A., 108(24), 9899–9904, doi:10.1073/pnas.1019576108, 2011. 10 

Schwalm, C. R., Huntzinger, D. N., Fisher, J. B., Michalak, A. M., Bowman, K., Ciais, P., Cook, R., El-Masri, B., Hayes, D., 

Huang, M., Ito, A., Jain, A., King, A. W., Lei, H., Liu, J., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Schaefer, 

K., Shi, X., Tao, B., Tian, H., Wang, W., Wei, Y., Yang, J. and Zeng, N.: Toward “optimal” integration of terrestrial 

biosphere models, Geophys. Res. Lett., 42(11), 4418–4428, doi:10.1002/2015GL064002, 2015. 

Shamseldin, A. Y., O‟Connor, K. M. and Liang, G. C.: Methods for combining the outputs of different rainfall–runoff 15 

models, J. Hydrol., 197(1–4), 203–229, doi:10.1016/S0022-1694(96)03259-3, 1997. 

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., 

Thonicke, K. and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the 

LPJ dynamic global vegetation model, Glob. Chang. Biol., 9(2), 161–185, doi:10.1046/j.1365-2486.2003.00569.x, 2003. 

Smallman, T. L., Exbrayat, J.-F., Mencuccini, M., Bloom, A. A., and Williams, M.: Assimilation of repeated woody biomass 20 

observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests, J. Geophys. Res. 

Biogeosciences, 122(3), 528-545, doi:10.1002/2016JG003520, 2017. 

Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. 

Soc., 93, 485–498, doi:10.1175/BAMS-D-11-00094.1, 2012. 

Thornton, P. E., Doney, S. C., Lindsay, K., Moore, J. K., Mahowald, N., Randerson, J. T., Fung, I., Lamarque, J.-F., 25 

Feddema, J. J., and Lee, Y.-H.: Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an 

atmosphere-ocean general circulation model, Biogeosciences, 6, 2099-2120, https://doi.org/10.5194/bg-6-2099-2009, 

2009. 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, 

A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy 30 

fluxes across global FLUXNET sites with regression algorithms, Biogeosciences, 13, 4291-4313, 

https://doi.org/10.5194/bg-13-4291-2016, 2016. 

Viney, N. R., Bormann, H., Breuer, L., Bronstert, A., Croke, B. F. W., Frede, H., Gräff, T., Hubrechts, L., Huisman, J. A., 

Jakeman, A. J., Kite, G. W., Lanini, J., Leavesley, G., Lettenmaier, D. P., Lindström, G., Seibert, J., Sivapalan, M. and 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



17 

 

Willems, P.: Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble 

combinations and predictions, Adv. Water Resour., 32(2), 147–158, doi:10.1016/j.advwatres.2008.05.006, 2009. 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O. and Schewe, J.: The Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP): project framework., Proc. Natl. Acad. Sci. U. S. A., 111(9), 3228–32, 

doi:10.1073/pnas.1312330110, 2014. 5 

Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., 

Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model 

description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845-872, doi:10.5194/gmd-4-845-

2011, 2011. 

Wieder, W. R., Cleveland, C. C. Kolby Smith, W. and Todd-Brown, K. E. O.: Future productivity and carbon storage limited 10 

by terrestrial nutrient availability, Nature Geosci., 8, 441-444, doi: 10.1038/ngeo2413, 2015. 

Williams, M., Schwarz, P. A., Law, B. E., Irvine, J. and Kurpius, M. R.: An improved analysis of forest carbon dynamics 

using data assimilation, Glob. Chang. Biol., 11(1), 89–105, doi:10.1111/j.1365-2486.2004.00891.x, 2005. 

Woodward, F., Smith, T., and Emanuel, W.: A global land primary productivity and phytogeography model, Global 

Biogeochem. Cy., 9, 471–490, 1995. 15 

Zhang, Q., Wang, Y. P., Pitman, A. J., and Dai, Y. J.: Limitations of nitrogen and phosphorous on the terrestrial carbon 

uptake in the 20th century, Geophys. Res. Lett., 38, L22701, doi:10.1029/2011GL049244, 2011. 

Zhang, Q., Wang, Y. P., Matear, R. J., Pitman, A. J., and Dai, Y. J.: Nitrogen and phosphorous limitations significantly 

reduce future allowable CO2 emissions, Geophys. Res. Lett., 41, 632-637, doi: 10.1002/2013GL058352, 2013. 

Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary 20 

production global data set, Remote Sensing of Environment, 95, 164–176, doi:10.1016/j.rse.2004.12.011, 2005.  

Zhao, M. and Running, S. W.: Drought-Induced Reduction in Global, Science (80-. )., 329(5994), 940–943, 

doi:10.1126/science.1192666, 2010. 

 

  25 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



18 

 

Tables 

Table 1: Information about global vegetation models used here. For each GVMs we indicate the range of values obtained while 

driving it with 5 GCMs. 

Model NPP (1996-2005) 

Pg C y
-1

 

NPP 

Pg C y
-1

 

Nitrogen
a
 Reference 

HYBRID 63.5 – 76.1 -17.0 – 25.3 Yes Friend and White 

(2000) 

JeDi 55.5 – 63.8 24.6 – 32.3 No Pavlick et al. (2013) 

JULES 65.1 – 71.5 34.1 – 41.4 No Clark et al. (2011) 

LPJ 69.6 – 75.6 26.7 – 35.0 No Sitch et al. (2003) 

SDGVM 70.9 – 74.8 32.3 – 37.5 Yes (Woodward et al., 

1995) 

VISIT 51.7 – 59.7 29.1 – 32.3 No Ito and Inatomi (2012) 

a
from Nishina et al. (2015) 

 5 

  

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-83
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 19 September 2017
c© Author(s) 2017. CC BY 4.0 License.



19 

 

Figures 

 

 

Figure 1: Zonal mean ΔNPP by the end of the 21st century under RCP8.5 compared to historical simulations. Shading represents 

the uncertainty around the zonal mean across the ISI-MIP ensemble, taken as one standard deviation for ISI-MIP, and calculated 5 
following equation (4) for REA. REAC, REAF and REAM, refer to REA values calculated based on observationally-constrained 

CARDAMOM,FLUXCOM and MODIS NPP respectively.  
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Figure 2: Differences between ΔNPP from REA average and ISI-MIP ensemble mean (in g C m-2 y-1). Red indicates where the 

REA averages predict ΔNPP greater than the ISI-MIP ensemble mean. Blue indicates where the REA averages predict ΔNPP less 

than the ISI-MIP ensemble mean. 5 
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Figure 3: Ratio of the uncertainty from each REA to the uncertainty in the ISI-MIP ensemble. For ISI-MIP, the uncertainty is 

calculated as the standard deviation across the ensemble while the uncertainty around the REA averages is calculated following 

equation 4. Stippling indicates regions where there is an agreement on the sign of ΔNPP through the uncertainty.  5 
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Figure 4: Zonal mean Ri, RB,i and RD,i (row-wise) in each REAC, REAF and REAM (column-wise). Each line represents the average 

value obtained across the five simulations of each GVM.  
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Figure 5: Collective model reliability ρ, model performance ρB and model convergence ρD (row-wise) for each REAC, REAF and 

REAM (column-wise). 
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